ディジタル変調方式(1)

Dept. of Computer Science, C.I.T.

変調の目的

- ♀ベースバンド信号(直流近傍成分を含む低周波数信号)の ままでは扱いづらい

 - ②公衆回線のPCMデータ(8kHz標本化/8bit μ-Law量子 化) = 64kbps
- 最も適した周波数帯へ変換
 - ⊚高周波数に変換することで、小型のアンテナで省電力の 伝送が可能(アンテナの大きさは周波数に反比例)
 - ♀ 周波数帯域を狭くすること (多値変調) が可能で効率的 な伝送を実現

Dept. of Computer Science, C.I.T.

変調 (modulation)

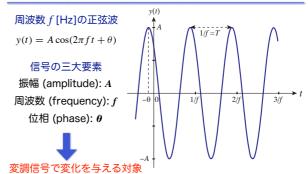
送りたい情報信号よりも高い周波数成分を有 する正弦波に情報信号を乗せて伝送する

搬送波 (carrier) 情報信号を用いて搬送波を変化させる

元の情報信号

変調信号 (modulating signal)

変化した搬送波



被変調信号 (modulated signal)

Takahiko Saba

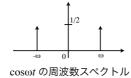
Dept. of Computer Science, C.I.T.

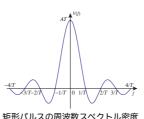
搬送波(carrier)の一般形

振幅変調(ASK)/周波数変調(FSK)/位相変調(PSK)

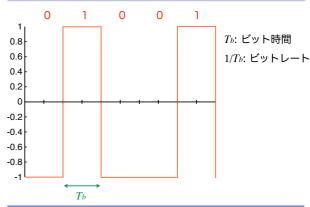
Takahiko Saba Dept. of Computer Science, C.I.T.

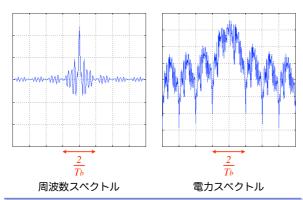
搬送波のスペクトル


搬送波は単なる正弦波 (周波数成分はωのみ)



変調すると


振幅・周波数・位相など がビット時間 Tごとに変 化するため, ω以外の周 波数成分が必ず発生する


変調信号(ベースバンド信号)

Takahiko Saha

Dept. of Computer Science, C.I.T.

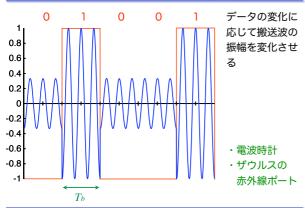
ベースバンド信号のスペクトル

Dept. of Computer Science, C.I.T.

ディジタルの振幅変調(ASK)

情報符号 "1", "0" に対して二つの振幅キーを定め, 与えられた搬送波に変調をかける方式

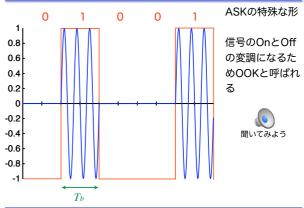
> 振幅シフトキーイング (Amplitude Shift Keying)


$$s_0(t) = A_0 \cos(2\pi f_c t)$$
 符号 "0"のとき

$$s_1(t) = A_1 \cos(2\pi f_c t)$$
 符号 "1"のとき

$$-\frac{T_b}{2} \le t \le \frac{T_b}{2}$$

Dept. of Computer Science, C.I.T.


ASK (Amplitude Shift Keying)

Takahiko Saba

Dept. of Computer Science, C.I.T.

OOK (On-Off Keying)

Takahiko Saba

Dept. of Computer Science, C.I.T.

ディジタルの周波数変調(FSK)

情報符号 "1", "0" に対して搬送波周波数 f_c をはさんで対 称な二つの周波数キー f1, f0を割り当て変調をかける方式

> 周波数シフトキーイング (Frequency Shift Keying)

$$s_0(t) = A\cos(2\pi f_0 t)$$
 符号 "0"のとき

$$s_1(t) = A\cos(2\pi f_1 t)$$
 符号 "1"のとき

$$-\frac{T_b}{2} \le t \le \frac{T_b}{2} \qquad f_0 = f_c - \Delta f$$
$$f_1 = f_c + \Delta f$$

FSK (Frequency Shift Keying)

データの変化に 応じて搬送波の 0.8 周波数を変化さ 0.6 せる 0.4 聞いてみよう -0.2 ・ページャ -0.4 ・コードレスフォン -0.6 · GSM 位相が連続: CPFSK T_b

PSK (Phase Shift Keying)

情報符号 "1", "0" に対して二つの位相キーを定め, 与えられた搬送波に変調をかける方式

> 位相シフトキーイング (Phase Shift Keying)

 $s_0(t) = A\cos(2\pi f_c t + \pi)$ 符号 "0"のとき $= -A\cos(2\pi f_c t)$ $s_1(t) = A\cos(2\pi f_c t)$ 符号 "1"のとき $-\frac{T_b}{2} \le t \le \frac{T_b}{2}$

Dept. of Computer Science, C.I.T.

8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 T_b

データの変化に 応じて搬送波の 位相を変化させ

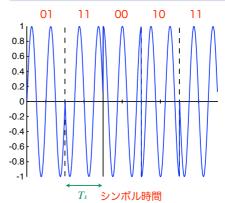
最も幅広く利用

- ・携帯電話/ PHS
- ·CS放送
- ・BSディジタル

Dept. of Computer Science, C.I.T.

多值変調方式

№ 1ビットのディジタル情報を、振幅/周波数/位相の異なる2 種類の波形を使って伝送

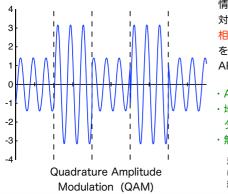

- ○2値 (binary) 変調方式 (バイナリASK, バイナリFSK, バイナリPSK)
- ÿ複数の振幅, 周波数, 位相状態を用いれば, 一度に複数(k) ビットを伝送可能
 - 多値/M値 (M-ary) 変調方式 (一般にM = 2^k)
 - ○同じ伝送帯域幅の場合は k 倍の伝送速度
 - ○同じ伝送速度の場合は伝送帯域幅が 1/k

注) -ary:~に関するもの,~に属するもの diction:言葉遣い, 語法 -> dictionary bin-:二, 両-> binary

Takahiko Saba

Dept. of Computer Science, C.I.T.

QPSK (4PSK)

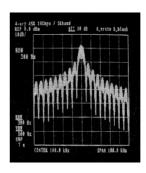

情報2ビットに 対し2²通りの 位相状態を割り 当てる

情報の単位, ビットに対して 変調の状態の単 位をシンボルと 呼ぶ

Takahiko Saba

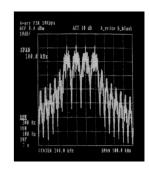
Dept. of Computer Science, C.I.T.

直交振幅変調(QAM)



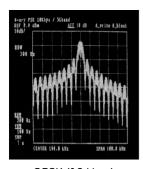
情報 k ビットに 対し2^k通りの位 相と振幅の状態 を割り当てる APSKともいう

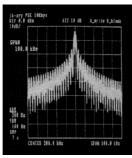
- ・ADSLモデム
- ・地上波ディジ タルTV
- 無線LAN


注) 厳密にはQAM はAPSKの特殊な 形である

ASK/FSK信号の電力スペクトル

4ASK (10 kbps)


Takahiko Saha


4FSK (10 kbps)

Takahiko Saha Dept. of Computer Science, C.I.T.

PSK信号の電力スペクトル

QPSK (10 kbps) (5 symbol/sec)

16PSK (10 kbps) (2.5 symbol/sec)

Dept. of Computer Science, C.I.T.

変調の分類

♀ベースバンド信号のスペクトルを搬送波周波数帯域へ移動

♀スペクトルの形が変化 ■

非線形変調

線形変調は?

ASK, PSK, QAM

(信号の包絡線が変動する変調)

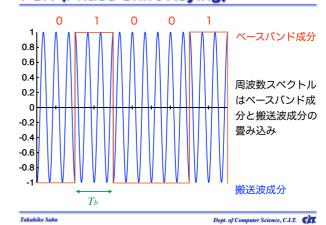
非線形変調は?

(信号の包絡線が変動しない変調)

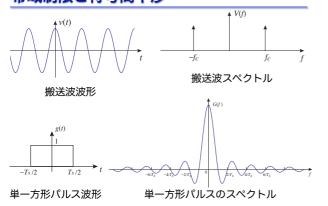
Dept. of Computer Science, C.I.T.

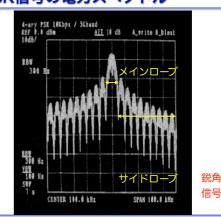
ディジタル変調に関わる問題

● 矩形パルス波形の帯域は無限大


- ○鋭角に変化する信号は多くの周波数成分を含む (フーリエ級数)
- o 隣接する周波数帯域を使う他のシステムに影響を与えない ように帯域制限(フィルタリング)が必要
 - 波形の鋭角な部分を鈍らせる
- ○フィルタの設計には注意を要する(シンボル間干渉)

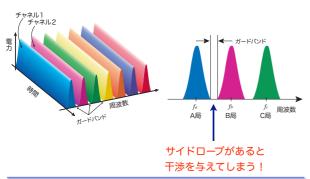
Takahiko Saba


Dept. of Computer Science, C.I.T.


PSK (Phase Shift Keying)

帯域制限と符号間干渉

PSK信号の電力スペクトル


鋭角に変化する 信号に現れる

Dept. of Computer Science, C.I.T.

Takahiko Saba

周波数分割多元接続(FDMA)

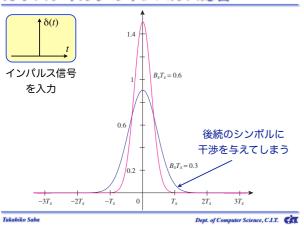
Frequency Division Multiple Access (FDMA)

Takahiko Saba

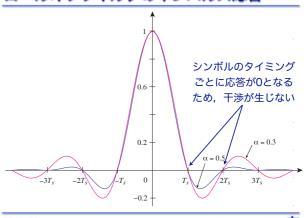
Dept. of Computer Science, C.I.T.

帯域制限の影響

♀ベースバンド信号が無限の帯域をもつため、PSK信号も無限 の帯域をもつ

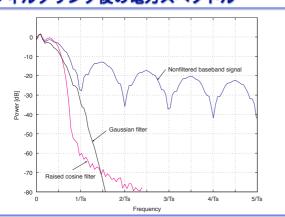

⊋帯域制限(フィルタリング)が必要

● 帯域制限によって符号間干渉が起こる

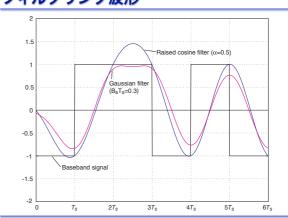

⊌ 通常は余弦ロールオフフィルタの使用

Dept. of Computer Science, C.I.T.

ガウスフィルタのインパルス応答



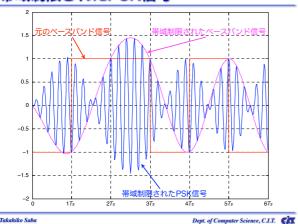
ロールオフフィルタのインパルス応答


Dept. of Computer Science, C.I.T.

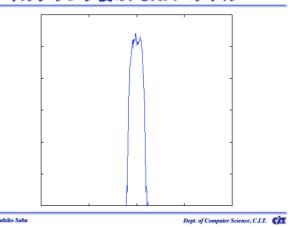
フィルタリング後の電力スペクトル

Dept. of Computer Science, C.I.T.

フィルタリング波形



Takahiko Saha


Dept. of Computer Science, C.I.T.

Takahiko Saha

フィルタリング後のPSKスペクトル

変調の分類

♀ベースバンド信号のスペクトルを搬送波周波数帯域へ移動

♀ スペクトルの形を保持 🗪 線形変調

♀スペクトルの形が変化 ■ 非線形変調

線形変調は? ASK, PSK, QAM 近年主流

(信号の包絡線が変動する変調)

非線形変調は?

FSK

(信号の包絡線が変動しない変調)

Takahiko Saba